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Abstract

In this paper, the algorithm for determining the

stencil of a one-dimensional Essentially Nonoscillatory

(ENO) reconstruction scheme on a uniform grid is
reinterpreted as being based on extrapolation. This
view leads to another extension of ENO reconstruc-

tion schemes to two-dimensional unstructured triangu-

lar meshes. The key idea here is to select several cells

of the stencil in one step based on extrapolation, rather
than one cell at a time. Numerical experiments confirm

that the new scheme yields sharp nonoscillatory recon-
structions and that it is about five times faster than

previous schemes.

Introduction

ENO (Essentially Nonoscillatory) schemes devel-
oped by Harten, Osher, Shu and others [1,2,3,4] are a

class of higher order numerical schemes for solving hy-
perbolic partial differential equations. These equations

frequently admit solutions in which some smooth struc-

ture is interspersed with discontinuities. ENO schemes

are designed so as to achieve a high order of accuracy in
the smooth regions and at the same time avoid spurious
oscillations at discontinuities. In such cases, conven-

tional fixed stencil schemes either damp out the smooth

structure while obtaining a monotone shock profile or

capture the smooth structure and incur spurious oscil-
lations near the shock.

The key feature of ENO schemes is the use of an

adaptive stencil in the reconstruction step, i.e. in con-

structing point values of u(x) from the set of cell

t Member, AIAA.

averages fii- For each cell, a searching algorithm de-

termines which stencil of neighboring points has the

smoothest data and u(x) is then reconstructed using

data only from this stencil. The variable stencil has

the effect of avoiding O(1) spurious oscillations near
discontinuities.

With unstructured grids offering greater geometric

flexibility and ease of adaptation, many efforts [5,6,7,8]
have been made to extend ENO schemes to unstruc-

tured grids. Harten and Chakravarthy [5] describe a
cell centered extension of the finite volume ENO scheme

to triangulated unstructured grids along with details

of implementation although no numerical results are

presented.' Abgrall [6,7] presents an ENO cell vertex
scheme where the control volumes are the cells of the

dual mesh and presents results for 1D convection and

gas dynamics.

In this paper, we first reinterpret the basic one di-
mensional ENO scheme on a uniform grid as a scheme

based upon eztrapolation. Based on this point of view,

we present another extension of ENO schemes to un-
structured meshes. This new scheme has the advantage
that it is more efficient than the scheme of Harten and

Chakravarthy[5] and gives almost identical results on

fine enough meshes. We consider only reconstruction

in this paper. Implementation of this scheme in a flow
solver will be the subject of future work.

1D ENO Reconstruction Revisited

Consider m- 1-th order ENO reconstruction of

a function u(z) using the primitive function technique

(see [1] for details). Let the cell of interest be [z/, Zj.{-1]

with cell average _j+1/2. The reconstruction will use

the cell averages [fij+l/2-m+l,.-.fii+l/2+,n-1]. The

primitive function of u(x) is defined by

H(x) = u(_)d_ (1)
o



and is known at the cell faces up to an additive con-

stant. An m-th order interpolant Q(z) that interpo-

lates H(x) at [xi, ...xi+m] is constructed next and the

reconstruction, denoted by Vj+l/_(x), is then obtained
as

dQ
= (2)

There are precisely m choices for i namely [2"- m +

1,....j]. The nonoscillatory properties of the recon-
struction result from choosing i so that [zi, ...zi+,n] is

the smoothest possible region around the cell [xj, x j+l].

One way of doing this is by a recursive procedure, as
described below.

We begin with i = j, the linear interpolant for

Q(x) for which the stencil is [zj, Xj+l], and keep adding
cells until we have the required number. Assume that

at some stage in this process the stencil is [xi, ....xi+p].

At the next step, the choice is between the two stencils

[zi, ...zi+p+:] or [zi-t, ...xi+p]. If H[xi, ...Zi+p+l] is less

than H[zi-x, ...zi+p], where H[..] denotes the divided

differences of H(x), the former stencil is picked, oth-

erwise the latter. In current practice, it is customary

to weight the two divided differences being compared
so as to favor stencil movement towards the centered

stencil. However, this is not crucial to the equivalence

we wish to establish below and thus has been dropped

for clarity.

Let us now consider a different method of sten-

cil selection. We begin as before and assume that at

some stage in this process the stencil is [zi, ...zi+p]. We

reconstruct u(x) based on this stencil and denote this
reconstruction by vP(x). Now, we extrapolate vP(z) to

the neighboring cell [zi+p, zi+p+l], evaluate the cell av-
erage of vP(x) over this cell, and subtract from this the

true cell average of this cell. Let us denote this resid-
ual as R +. The same thing can be done for the other

neighboring cell [xi-1, zi] and we end up with another
residual which we denote as R-. If IR+I < IR-I, we

choose [zi, ...zi+p+t] for the stencil and proceed to the

next step. If not, the stencil chosen is [zi-1, ...zi+p].

Since the reconstruction at any stage is the deriva-

tive of a primitive function, the values of the residuals
can be calculated as

p-1

R + = H[zi, ..., xi+p+l] H(zi+p+: - xi+k) (3)
k=0

p-1

R- = H[zi-1, ..., zi+p] H(zi+k+l - zi_x) (4)
k=0

It follows that for a uniform grid this method of sten-
cil selection is identical to the standard ENO method

via divided differences of H since the two products in

Eqs. (3) and (4) are the same. As in standard ENO,
the residuals can be appropriately weighted so as to
favor stencil movement towards the centered stencil.

In smooth regions, the residuals are O(Ax p) while if
the extrapolated cell contains a jump discontinuity the

residual is O(1), entirely analogous to scaled divided

differences. For nonuniform grids in one dimension,

the two methods differ because of different weighting
factors on the divided differences and it is not clear to

us which is the better choice. Limited numerical exper-

iments with the new method yield solutions that are
similar to that from standard ENO.

The extrapolation method outlined above is rem-

iniscent of subcell resolution introduced by Harten[9].

There, the extrapolation is performed to locate the dis-

continuity within a cell. Unlike subcell resolution, the

extrapolation method can be readily extended to multi-

dimensions as we show below. In addition, ENO inter-

polation can also be viewed as being based on extrap-

olation. In this case, the extrapolated point value is

compared to the true point value, their difference be-

ing the appropriate residual.

In what follows below, we apply this extrapolation

idea to the problem of ENO reconstruction on a two-
dimensional unstructured mesh.

ENO Reconstruction on Unstructured Grids.

An unstructured triangular mesh is characterised

by a set of vertices (zi,yi), where i = 1, ..nv and a set

of connection coefficients c(i, j) where i = 1, nc and j =
1,3. nc is the number of cells or triangles and nv the

number of vertices. For the i-th. triangle, c(i, j) specify

the labels of its vertices. A given set of vertices may be
connected in many ways to form an unstructured grid.

A systematic way of connecting a given set of points is

the so called Delaunay triangulation which has several

desirable properties.

We will consider only cell centered schemes in this
work so that the control volumes or cells will be the tri-

angles themselves. The reconstruction problem can be
stated as follows: Given the cell averages of a piecewise

smooth function u(z), reconstruct the function within
a particular cell in a nonoscillatory manner to within a

specified order of accuracy. For some theoretical results

on this problem, the reader is referred to Abgrall[6,7].

The first step is to consider the case where u(z) is
globally smooth. Let Ci be the cell of interest whose

centroid is chosen as the origin of the coordinates (z, y).
For an m-th order reconstruction we seek the recon-



structedfunctionas

= a ,.xJy' (5)
I=0 j+k=l

Since there are (m + 1)(m + 2)/2 unknowns, it is clear
that we need a stencil of at least that many cells near

Ci. For conservation, one of these cells must be Ci.
How these cells are selected lies at the heart of the ENO

reconstruction procedure and will be discussed below.

For now, assume a stencil of cells with cell indices Jq(i),

where q = 1, ...(m+ 1)(m + 25/2 have been found. The

linear system for determining aj,k can be written as

o. < .sy >q= (6)
I=0 jTk=l

where q = 1, ...(m + 1)(rn -4- 2)/2 and

1 //c xJykdxdy (7)< xJy k >q---- _ _q

There is no guarantee that the linear system (6) will

be nonsingular, but when it is, the solution of it yields

the required reconstruction. It is clear, however, that

the matrix will be singular only for special cases.

We now describe a method of selecting the stencil

due to ttarten and Chakravarthy[5] which we shall refer

to as ENOHC. We begin with the single triangle Ci for

which the zero-th order reconstruction is a0,0 = ul or

v(x) = (8)

Let us denote by Jp(i 5 a stencil of p cells at the p-th
stage of the stencil selection process where

Jp(i) = {il, i_, ...ip} (9)

These p triangles can be used to fit p terms of the expan-

sion(5) so that associated with this stencil are p values

of aj,k. While these p terms can be taken in any order,
it is natural to take them in the lexicographic order,

namely, 1, x, y, x 2, xy, y2, .... Let J_ denote cells not in
Jp(i) that share a common side with cells in Jp(i). In

the next step we add to Jp(i) any one lriangle from J_
and fit the p + 1 terms in the expansion (5 5 using the

p-4- 1 triangles. We do this for all triangles in J_ and
pick the one that minimizes the sum of the absolute val-

ues of the p + 1 coefficients a. The stencil now contains

p + 1 triangles and p + 1 values of aj,k and we proceed

to the next step. When p = (m+ 1)(m-4-2)/2- 1
the process is complete and we have the required m-th
order ENO reconstruction.

The cost of adding one cell to the stencil can be

roughly estimated as follows. For every element of J_,

calculating the norm of the coefficients a involves cal-

culating 2p + I quadratures (the additional row and

column of the linear system (6)) one p + 1 × p + 1 ma-

trix inversion and a norm calculation. Neglecting the
cost of finding the minimal element, the approximate

cost of adding one cell to the stencil may be written as

IJ_,l((2p+ l)Q+ M(p+ l)+ N(p+ l)) (10)

where Q is the cost of a quadrature, M(n) is the cost
of inverting an n x n matrix and N(n 5 is the cost of a
norm calculation of n terms.

This method seems to be a logical extension of the
standard ENO scheme in one dimension. Numerical

tests that we have performed with the method (to be

presented below) show that sharp nonoscillatory recon-
structions are obtained away from the boundary. A
curious feature of the scheme is that the stencil chosen

and hence the reconstruction obtained are not coordi-

nate invariant, which is due to the fact that terms are

fitted one by one. The main drawback of the scheme

is its expense, especially at higher orders. This may

be traced to the fact that the number of triangles re-

quired is proportional to m 2 and triangles are added

one by one. To go from an m-th order reconstruction

to m + 1-th order requires the addition of m + 2 cells to

the stencil, each of which is added in a separate step.

In the next section, we introduce a simplification that

will allow us to choose many cells together resulting in

a more efficient algorithm.

Stencil Selection via Extrapolation

As before, we begin with the single triangle Ci

and the zero-th order reconstruction given by Eq.(8).
Assume we have an l-th order reconstruction for the

cell of interest. This means we have a stencil Jp(i) of

p = (1 + 1)(l + 2)/2 cells and a reconstruction of the
form

1

= (11)
q=Oj+k=q

As before, we have the set of neighbors to this stencil

J_. For every candidate cell in q E J_ we compute the
residual given by

1 //c v_(x,y)dxdy (12)

If the cell Cq and all cells in the stencil Jp(i) lie in
a smooth region, the residual is O(h t+l) where h is

some representative cell size. If not, the residual is

O(1). Hence, we compute this residual for all candidate
triangles and pick those l + 2 triangles that have the



leastvalueof the residual. Once we select the I + 2

additional triangles, we perform a linear reconstruction

problem to obtain the l + 1-th order reconstruction.

Then we proceed to the next stage until when ! = m
we have the desired reconstruction.

The key difference between ENOHC and this

method is that we select all l + 2 triangles in one step.

This is also the main problem with this method which

works best when every cell has a large number of neigh-

bors. In many cases, especially for the lower orders,

there are not enough triangles. For example, while go-

ing from the zero-th order reconstruction to a first order

reconstruction, we have to select 2 triangles from the 3

neighbors. This is usually not enough of a choice and

the reconstruction is often oscillatory. Numerical tests

suggest two further modifications which are necessary

for a robust reconstruction algorithm. The first is we
have found it necessary to limit the order of the recon-

struction based on the magnitude of aj,k. Specifically,
we compute the norm

1
1

N(l) = (i + 1)(/+ 2)/2 Z Z la_,kl (13)
q=Oj+k=q

and if N(I) > 1/h we terminate the reconstruction at

that stage. Unlike ENOHC, this has the effect of re-

ducing the order of the reconstruction near discontinu-

ities, in the same spirit as Suresh[10]. There does not
seem to be a clear choice for the mesh refinement pa-
rameter h for unstructured meshes. In our numerical

experiments, h was chosen to be the minimum of the
circumcircle radii.

The second modification is based on the detectabil-

ity of the residuals. As mentioned above, the residual

for a cell in the smooth region is O(h t+l ) while for a cell

containing a discontinuity it is O(1). Thus detection of
the "bad" cells is most _difficult at the lower values of

1. On the other hand, ENOHC is relatively inexpensive

at the lower orders. Hence, the first few stages can be

obtained using ENOHC and the latter stages obtained
using extrapolation. Thus the second modification that
we have used is to obtain a first order reconstruction us-

ing ENOHC and use the extrapolation procedure from

then on. In numerical tests below, we shall refer to the
scheme described above as ENOEX.

We remark that a scheme in between ENOHC and

ENOEX can also be constructed which like ENOHC

adds cells one by one but uses extrapolation to select

the cells. Here, at the p-th stage of stencil selection, we

compute the residual (12) for all cells in J_ and pick a
single cell that has the least residual. This triangle is

added to Jp and the associated linear system solved to

get the new p + 1 values of aj,_ and we proceed to the
next stage. The effort involved in going from a stencil of

p cells to p + 1 cells is one quadrature for every element

of J_ and one matrix inversion or

IJ_,IQ+ M(p + 1). (14)

This is still a substantial saving over Eq.(10) although
much more expensive than ENOEX. We do not consider

this intermediate scheme any further.

Numerical Experiments

We describe below several numerical tests per-

formed on the new ENOEX reconstruction algorithm.
The unstructured grids used for these purposes were

generated by applying random perturbations to the ver-

tices of a structured grid and then applying the Bowyer-

Watson Delaunay triangulation algorithm to the result.

Typical grids are shown in Fig. 1 and Fig. 9, where

the domain of reconstruction is [- l, 1] x [- 1, 1]. For the
coarse grid (Fig. 1) a structured grid of 40 × 40 was used

and the magnitude of the random perturbation was set

to 4-40% of the structured mesh size (i.e. 0.05). For the

fine grid, a structured grid of 80 x 80 was used with the

same relative magnitude of the perturbations. The per-

turbations are set to zero on the boundary. The cell size

parameter in ENOEX was chosen to be the minimum

of the circumcircle radii over the whole grid. This is

obtained from the Bowyer-Watson algorithm and fixed
apriori in the computations presented below.

In studying the accuracy of the reconstructions,

contour plots of functions on unstructured meshes can

be made with presently available software tools. How-

ever, getting one-dimensional line plots of the function

along curves is often difficult and involves further in-

terpolation. For this reason, we have found it conve-

nient to perform the reconstruction on to the nodes of a

suitably chosen structured mesh. From the structured

mesh values it is quite easy to study one-dimensional

line plots along the coordinate directions. The struc-

tured mesh is chosen so that there is roughly one node

per cell and is 41 x 41 for the coarse grid and 81 × 81
for the fine mesh.

1. Reconstruction of a smooth function

The first tests are performed on smooth functions

and serve as a convenient debugging mechanism. We
reconstructed the smooth function

u(x, y) = sin(_r(x + y))

on the two unstructured meshes shown in Figs. 1 and

9 respectively using ENOEX4 (fourth order ENOEX



reconstruction).Theerrorsin themax-normandcom-
putedorderof accuracyareshownin Table-1.These
errorswerecomputedatthecentroidofeachcell.Since
thereisnowelldefinedmeshrefinementparameter,we
havecalculatedtheorderof accuracybasedonfourdif-
ferentparameters,namelythemaximumandminimum
circumcircleradiiandthesquarerootof themaximum
andminimumcellareas.Thenumericalorderofaccu-
racyvariesfrom6.28to 3.55,dependingonthemesh
refinementparameterused.In theory,all shouldap-
proach5onfineenoughmeshes.

2. Reconstruction of a piecewise smooth function

Since we deal only with the reconstruction prob-

lem, the initial function to be reconstructed has to be

sufficiently general. A suitable function has been con-

structed by Abgrall [6] which has several curved discon-

tinuities and smooth structures. The function (which

is slightly different from that in Abgrall[6]) is defined
as follows: If ¢ is any angle and r = -(y - xtan(¢)/3

then fc,(x, y) is defined as:

if r_< -1/3, f¢(x,y)-- -r sin(_rr2/2), ]if r_> 1/3, f¢(x,y) = 2r-sin(3_rr)/6, / (15)
if It[ < 1/3, f¢(x,y)= [sin(27rr)[

and the function to be reconstructed u(x, y) is

u(x, y) = fv/_-_(x, y) if x _< cos(_ry/2)

y) = y) + cos(2 u)

if x > cos(ry/2)

(16)

The cell averages of this function over each cell are com-

puted by using an adaptive quadrature routine(from

the IMSL library), where in most cells, the estimate of
absolute error is machine zero. However, for cells near

discontinuities, the absolute errors are larger, with the

largest error being O(10-6).

Figures 3 and 4 show the results of reconstruction

using ENOHC4 and ENOEX4 (fourth order reconstruc-

tions) respectively on the coarse mesh shown in Figure
1. Note that this reconstruction corresponds to a fifth

order scheme for convection or gas dynamics. Figure
2 is a contour plot of the exact solution. It can be

seen that the results of ENOEX4 are comparable to

ENOHC4 although the latter has slightly better reso-
lution at discontinuities. Figures 5 - 8 show line plots

of the reconstructions at various x and y sections of

the domain. For the most part, the reconstructions are

similar with ENOEX showing a slightly larger under-

shoot in Figure 7. Figures 11 and 12 show correspond-

ing results for the fine mesh shown in Figure 9. In this

case, the two reconstructions are almost identical with

the only difference being at about (-0.4,-0.9) where

ENOEX4 is a bit noisy.

The CPU time comparisons are presented in Table

2. Since a lot of time in these runs is spent in com-

puting the intersections with the structured grid and

in the computation of the cell averages, these times
were not included in the run times listed in Table-2. It

can be seen that ENOEX4 scheme is about five times

faster than ENOHC4. These comparisons are meant to

serve only as a guide as they depend on the efficiency of

programming. Furthermore, the gap narrows for lower

orders being identical for m = 1.

Conclusions and Remarks

In this paper, we have proposed a new essentially

nonoscillatory (ENO) reconstruction procedure on two-
dimensional unstructured meshes. At the heart of the

method is a reinterpretation of standard ENO recon-

structions as being based on extrapolation. Numerical

experiments confirm that the reconstruction is indeed

nonoscillatory and that the new fourth order scheme is
about five times faster than earlier schemes.

We view ENOEX as a first step towards faster
ENO schemes on unstructured meshes. Many issues

need to be investigated further. Weighting of the cen-

tral stencil, which is important for stability consider-

ations, can be accomplished in several ways, with and
without some notion of distance from the cell of inter-

est. Better choices of the cell size parameter may exist.

These questions will be explored further in future work.
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Table- 1

Grid

Coarse

Max Error
9.8698 x 10 -4

Cmax

0.0542

Cmin

0.0155 0.0100 0.0566

Fine 3.9099 xl0 -s 2.8077(-2) 6.2788(-3) 6.0046(-3) 0.0304

Order -- 4.90 3.55 6.2870 5.1962

Table 1: Reconstruction of the smooth function sin(r(x + y)) on un-

structured meshes. Cmi,_ and C,_ are the minimum and maximum of the

circumcircle radii and Amin and Am_ are the minimum and maximum cell

areas respectively.

Table - 2

CPU Times (Ymp Seconds)
Grid ENOEX4 ENOHC4

Coarse 21.694 124.252

Fine 100.07 525.121

Table 2: Comparison of CPU times for fourth order reconstruction using

ENOHC and ENOEX.



Coarsegrid: 1600vertices3042 triangles+-0.4Perturb

Figure 1: Unstructured Coarse Grid. 1600 vertices and 3024

triangles. Generated by random perturbations of a 40 X 40

uniform structured grid.

Figure 2: Exact solution on the coarse grid

Figure 3: Fourth order ENOHC solution on the coarse grid Figure 4: Fourth order ENOEX solution on the coarse grid
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Figure 5: ENO Reconstructions on the line x =-0.2. Coarse Figure 6: ENO Reconstructions on the line x = +0.1.
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Figure 7: ENO Reconstructions on the line y = -0.7. Coarse Figure 8: ENO Reconstructions on the line y = 0.55. Coarse

grid. grid.



FineGrid: 6400 verdcs12482triangles+_0.4 Perturb

Figure 9: Unstructured Fine Grid. 6400 vertices and 12482

triangles. Generated by random perturbations of an 80 X

80 uniform structured grid.

Figure 10: Exact solution on the fine grid

Figure 11: Fourth order ENOI-IC solution on the fine grid Figure 12: Fourth order ENOEX solution on the fine grid

10
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